KRISTALLDATEN UND THERMISCHE ZERSETZUNG DER MODIFIKATIONEN DES KALIUMHYDROGENJODATS, KH(IO₃)₂

GY. ARGAY, I. NÁRAY-SZABÓ und É. PÉTER

Zentralforschungsinstitut für Chemie der Ungarischen Akademie der Wissenschaften, Budapest, Ungarn

(Eingegangen am 21. August 1969)

The crystal data of the α - and γ -modifications of KH(IO₂)₂ were determined. The rhombic β -modification which has been described by earlier authors could not be obtained. In the course of thermal decomposition both crystal types release water, then I₂O₅ and O₂, leaving a residue of KI. As an intermediate, K₂I₄O₁₁ is formed. The temperatures of the DTA and DTG peaks of the α - and γ -modifications, were found to be different.

Die Modifikationen des $KH(IO_3)_2$ sind kristallographisch schon vor mehr als 100 Jahren untersucht worden [1-3]. Die damaligen Angaben bedürfen aber einer Revision, worauf schon Groth [4] hingewiesen hat.

Wir haben die Kristalldaten dieser Modifikationen bestimmt und ihre termische Zersetzung mit dem Derivatographen von Paulik, Paulik und Erdey [5] untersucht. Die vorliegende Arbeit berichtet über die Ergebnisse.

Das käufliche KH(IO_3)₂ ist in Wasser wenig löslich; aus der Lösung scheiden sich zunächst kleine Täfelchen aus, die zur monoklinen γ -Modifikation gehören. Nach Marignac soll diese Modifikation unter 40° stabil sein. Unserer Erfahrung nach wandeln sich aber diese Täfelchen in der gesättigten Lösung allmählich in größere, ebenfalls monokline, zur α -Modifikation gehörende Kristalle um, deren Länge nach einer Woche 6—7 mm erreichen kann. Sie sind immer Zwillinge und häufig bilden sie Rosetten; die einzelnen Individuen sind glasklar.

Unter den aus zahlreichen Kristallisationen stammenden vielen Kriställchen fanden sich einige Nädelchen, die mit dem Weissenberg-Goniometer untersucht sich als rhombisch erwiesen. Sie waren aber nicht gleich der von den erwähnten früheren Autoren gefundenen rhombischen Modifikation und die chemische Untersuchung ergab, daß sie nicht aus $KH(IO_3)_2$ bestehen. Doch war die zur Verfügung stehende Menge zur weiteren qualitativen Analyse ungenügend.

α-Modifikation

Von den großen α -Kristallen abgeschnittene, kleine Prismen ergaben nach der Weissenberg-Methode und mit dem Diffraktometer (Tab. 1) die folgende Elementarzelle:

2 v ₀	d Å	sin² V ₀	$\sin^2 \vartheta_c$	hkl	Int _i
0.04	0 782	00621	00621	001	15
9.04	5 026	01695	.00021	011	27
16 30	5 / 38	02010	02010	110)	21
10.50	5.450	02010	02010	111	33
18 14	4 890	02485	02052	002	80
20.60	4.311	03197	03202	201)	
20.00	1.511	05151	03231	1111	68
21.02	4 226	03327	03296	117	15
21.73	4.090	03553	03549	012	24
22.28	3.990	03733	03780	200	18
23.85	3.731	04270	04260	020)	
			04267	$21\overline{1}$	11
25,36	3.512	04818	04845	210	59
25,60	3.480	04908	04881	021)	
			04932	$21\overline{2}$	100
26.50	3.363	05253	05205	120)	
			05227	121	14
27.32	3.264	05577	05590	003	
			05600	201	64
28.00	3.186	05853	05802	113	19
29.39	3.039	06435	06426	121	32
29.71	3.007	06573	06491	122)	56
			06655	013∫	50
30.11	2.968	06747	06746	022	32
30.50	2.931	06919	06839	213	12
32.88	2.724	08010	08040	220	18
33.21	2,698	08167	08127	222	21
33.59	2.668	08349	08393	311	9
33.85	2.648	08475	08455	312	19
35.78	2.510	09437	09398	113	9
36.56	2.458	09838	09850	023	2
		10150	09860	221)	-
37.17	2.419	10158	10206	031	2
38.00	2.368	10599	10552	131	4
41.66	2.177	12645	12594	123	33
41.92	2.155	12/96	12/65	320	26
			12/8/	402	20
42.21	2 126	12024	12809	402)	10
42.31	2.150	13024	12907	205	10
42.85	2.111	13331	13344	401	83
			13365	230	0.5
43 15	2,096	13522	13517	403	2
43.65	2.073	13822	13874	412	8
44 22	2.048	14167	14198	024	10
44.88	2.019	14571	14541	113)	10
.,,			14582	413	10
				,	
	·				

 $\label{eq:tabelle1} \begin{array}{l} \mbox{Tabelle 1}\\ \mbox{Diffraktogramm des } \alpha\mbox{-}KH(IO_3)_2; \ \mbox{CuK}\alpha = 1.542 \ \mbox{\AA} \end{array}$

J. Thermal Anal. 1, 1969

2 v _e	d Å	sin² ở₀	sin² ở _c	hkl	Int _i
46.08	1.062	15442	15467	404	26
46.28	1.902	15945	.15407		5
47.07	1.931	16543	16531	414)	>1
46.00	1.095	10545	16593	015	
48 71	1 869	17006	17040	040	14
49.45	1 843	17494	17574	225	6
49.89	1.828	17787	17736	125)	
47.07	1.020	1	17778	423	23
50.38	1.811	18115	18090	330	41
51.02	1.790	18548	18510	234)	2
01102			18514	204	3
51.95	1.760	19183	19206	141)	. 0
52.03	1.758	19238	19271	14 <u>2</u>)	0
53.13	1.724	20000	20012	216	7
53,59	1.710	20322	20247	241	2
54.27	1.690	20802	20774	116	
		I	20825	240	2
			20837	334	
54.75	1.677	21143	21141	316	8
			21180	512	0
55.04	1.668	21350	21289	513	5
55.43	1.658	21629	21673	142	11
55.62	1.655	21752	21781	143	48
56.38	1.632	22316	22314	511	3
			22361	006]	5
57.05	1.614	22805	22775	224	-
			22818	243	9
	l		22868	134J	
57.68	1.598	23268	23209	226	14
59.16	1.562	24368	24372	341	8
59.30	1.558	24473	24438	342j	
60.38	1.533	25288	25313	205	7
			:		

 $\sin^2 \vartheta_c = 0.00945 \ h^2 + 0.010653 \ k^2 + 0.006211 \ l^2 + 0.00600 \ hl$

 $\begin{array}{lll} a &=& 8.615 \pm 0.003 \text{ Å} & V &=& 629.6 \cdot 10^{-24} \text{ cm}^3 \\ b &=& 7.471 \pm 0.003 \text{ Å} & \beta = 113.03 \pm 0.1^\circ & V_M &=& 157.4 \cdot 10^{-24} \text{ cm}^3 \text{ pro Mol} \\ c &=& 10.63 \pm 0.01 \text{ Å} & \text{Raumgruppe } P2_1/a & Z &=& 4 \text{ Formeleinheiten} \\ d_x &=& 4.112 \text{ g} \cdot \text{cm}^{-3} \\ d_{gem} &=& 4.045 \text{ g} \cdot \text{cm}^{-3} \end{array}$

Nach unserer Bestimmung ergibt sich für die Achsenverhältnisse

$$a:b:c=1.1517:1:1.4212,$$

nach Marignac dagegen ist

a:b:c = 1.490:1:2.6235 und der Winkel $\beta = 91.26^{\circ}$;

2 v ₀	d Å	sin² ở o	$\sin^2 \vartheta_c$	khl	Int _i
12.77	6.932	01237	01231	100	1
13.53	6.544	01392	01392	012	1
16.42	5.398	02039	02030	013)	
	2.025		02043	004	23
16.75	5.293	02121	02112	110)	[
			02127	111	8
17.82	4.977	02397	02397	112	2
19.43	4.568	02848	02848	112	4
19.70	4.506	02926	02924	014	4
22.18	4.008	03700	03704	114	3
23.29	3.819	04074	04073	015	5
24.68	3.607	04567	04596	006]	100
			04606	114∫	100
25.21	3.532	04762	04755	120	10
			04770	12 <u>1</u> ∫	12
25.63	3.475	04920	04925	200	4
25.87	3.444	05011	04984	202	14
			04996	121)	14
27.32	3.264	05577	05567	024	25
			05566	123	25
28.03	3.183	05865	05868	115	18
			05887	202J	10
28.50	3.132	06059	06065	204	8
28.93	3.086	06239	06243	123	13
		07700	06278	213)
32.00	2.797	0/598	07578	117	2-3
22.20	0.000	001/0	0/632	213]	
33.20	2.698	08162	08167	206	38
22.01	2 (42	09504	08508	222	0
25.75	2.043	08304	00/11	222	2
33.73	2.511	12726	12756	231)	2
41.60	2.101	12720	12750	225	5
			12770	0010	
43 29	2 090	13605	13641	217)	
75,29	2.070	15005	13646	306	5
44 10	2.053	14094	14081	129)	
11110		T TOP T	14097	040	
			14116	219	14
			14126	313	(
44.56	2.033	14374	14394	321	
			14399	226	•
45.64	1.988	15042	15071	321	4—5
47.53	1.913	16240	16206	137	7
			16284	227)	/
50.64	1.803	18290	18261	1,0,12	9
			18270	039	
	1 1	1	1		t

Tabelle 2 Diffraktogramm des γ -KH(IO₃)₂; CuK α = 1.542 Å

J. Thermal Anal, 1, 1969

2 v̂ 0	d Å	$\sin^2 \hat{v}_0$	$\sin^2 \vartheta_o$	khl	Int _i
51.30	1.781	18738	18771	2, 1, 11	7
52.27	1.750	19403	19375	241	5—6
53.10	1.725	19979	19983	242	6
53.90	1.701	20540	20509	3357	
			20517	139	3
			20586	317	Ì
55.04	1.668	21350	21344	3. 1. 10	5
56.30	1.634	22258	22221	1, 1, 13)	
			22264	$24\overline{6}$	4
			22267	048	
60.02	1.541	25015	25010	$34\overline{2}$	6
00.0 D		20010	20010		

 $\sin^2 \vartheta_c = 0.012312 h^2 + 0.008810 k^2 + 0.001277 l^2 + 0.001128 hl$

diesen Verhältnissen liegt natürlich eine andere Aufstellung zu Grunde. Wir können diese experimentell erhalten, indem wir eine andere *c*-Achse und einen nahezu rechten β -Winkel wählen; dann wird

$$a = 8.615 \pm 0.003 \text{ Å}$$

$$b = 7.471 \pm 0.003 \text{ Å} \quad \beta = 91.2^{\circ}$$

$$c = 19.58 \pm 0.01 \text{ Å} \quad \text{Raumgruppe } P \ 2_1/n; \ Z = 8$$

und die Achsenverhältnisse ergeben sich zu

a:b:c = 1.1517:1:2.6208,

in genügender Übereinstimmung mit den älteren Messungen.

y-Modifikation

— Die γ-Modifikation ergab ebenfalls eine monokline Zelle:

Das Achsenverhältnis a:b ist nach den Diffraktogrammen (Tab. 2) 0.8546 und das stimmt gut mit dem Marignacschen Wert 0.8565 überein; c:b ist aber nach unseren röntgenographischen Messungen 2.654 gegenüber dem früher gefundenen goniometrischen Verhältnis 1.1295. Die Winkel β betragen 98.19° (röntgenographisch) und 98.45° (goniometrisch, nach Marignac). Diese Verschiedenheit der beiden Achsenverhältnisse und die Gleichheit der Winkel β können wir nicht erklären.

Wie schon erwähnt wurde, haben wir unter den Kristallen Nädelchen gefunden. die aber nicht aus Bijodat (oder Trijodat) bestehen, da sie mit Jodkali-Stärkepapier keine Reaktion gaben. Diese Kristalle sind rhombisch und haben die Achsenlängen

<i>a</i> ≈	8.941 <u>+</u> 0.005 Å		$V = 917.5 \cdot 10^{-24} \mathrm{cm}^3$
b =	9.343 ± 0.005 Å	Raumgruppe $P2_12_12_1$	
c =	10.980 ± 0.015 Å		

Mangels an Material konnten wir die Dichte nicht bestimmen und auch kein Diffraktogramm verfertigen. Die Achsenverhältnisse stehen in keiner Beziehung zu den Ergebnissen der goniometrischen Messungen von Marignac. - Wir haben unter den Stoffen mit bekannter Elementarzelle keinen gefunden, dessen Kristalldaten den von uns gefundenen ähnlich wären. - Es ist möglich, daß diese Kristalle eine noch unbekannte Modifikation des Kaliumjodats sind; in diesem Falle wäre Z = 12.

Tabelle	3
---------	---

Thermische	Zersetzung	der	α-	bzw.	γ -Modifikation	des	$KH(IO_3)_2$
		(Ein	waa	ige 50	0 mg)		

DTA Spitze		DTG	Spitze	TG-Kurve		Gewichtsverlust, gemessen, mg		Vorgang	Gewichtsverlust, berechnet, mg	
α	γ	α	γ	α	γ	α	Ŷ			
		165 ss	145 ss	160 AZ	110 AZ	0	0		0	
172 m	150 m			180 ASt	158 ASt	12.5	15	T	11.4	
325 s	330 st							Modifika- tionsän- derung		
350 st	340 m	—	. —	355 ESt	345 ESt				-	
410 st	414 st	410 sst	410 sst			1				
—	_		_	468 ASt 510 ESt	450 ASt 513 ESt	222	227	11	225.6	
528 sst	527 sst	535 st	526 m							
548 Inf	548 st		544 m 552 m							
				590 ASt	588 ASt	305	306	III	288	

Vorgang I: 2 KH(IO₃)₂ \rightarrow H₂O + K₂I₄O₁₁

Vorgang II: $K_2I_4O_{11} \rightarrow I_2O_5 + 2 \text{ KIO}_3$ Vorgang III: $2 \text{ KIO}_3 \rightarrow 3 \text{ O}_2 + 2 \text{ KI}$

Abkürzungen: s = schwach; ss = sehr schwach; m = mittel; st = stark; sst = sehrstark; AZ = Anfang der Zersetzung; EZ = Ende der Zersetzung; ASt = Anfang der Stufe; ESt = Ende der Stufe

J. Thermal Anal. 1, 1969

418

Man sieht, daß die Dichten der α - und γ -Modifikationen nicht gleich sind, daher müssen auch ihre Stabilitäten verschieden sein, was sich beim thermischen Verhalten zeigt.

Es ist uns gelungen, genügende Mengen der α - und γ -Modifikationen mit der Hand auszulesen, um Derivatogramme anfertigen zu können. Zu diesem Zweck wurden jeweils 500 mg eingewogen. Aus der Tab. 3 sieht man, daß zwischen der α - und der γ -Modifikation eine zwar nicht allzu große, aber ausgesprochene Differenz besteht. Die Erhitzungsgeschwindigkeit betrug 3°/min.

Abb. 1. Derivatogramm des α -KH(IO₃)₂

Aus den Derivatogrammen (Abb. 1 und 2) erhellt aber, daß in beiden Fällen dieselben Vorgänge sich abspielen, die durch die entsprechenden Stufen der TG-Kurve bzw. durch die Gewichtsverluste identifiziert werden können.

Der erste, wenig Gewichtsverlust verursachende Vorgang (1) entspricht dem Austritt von einem Molekül Wasser aus 2 Molekülen $KH(IO_3)_2$:

Die Verbindung $K_2I_4O_{11}$ ist zwar in der Literatur nur kurz erwähnt [6], doch liegt sie mit großer Wahrscheinlichkeit im Zersetzungsvorgang des KH(IO₃)₂ zwischen 160 und 300° vor. Dieses Produkt hat nämlich ein eigenes Diffraktogramm, in welchem die Reflexionen des KH(IO₃)₂ und des KIO₃ nicht vorkommen, obwohl beide Verbindungen starke Linien haben. Man kann also nicht ein Gemenge von $KIO_3 + KI_3O_8$ oder $2 KIO_3 + I_2O_5$ statt $K_2I_4O_{11}$ schreiben. Der aus Gl. (1) für 500 mg KH(IO₃)₂ berechnete Gewichtsverlust beträgt 11.4 mg; gefunden wurden 12.5 mg bei der α -Modifikation und 15 mg bei der γ -Modifikation. Die Genauigkeit der Bestimmung ist im ersten Falle befriedigend, im zweiten Fall kann ein geringer Sauerstoffverlust vorliegen (die Differenz zwischen dem berechneten und gefundenen Wert beträgt, in absoluten Prozenten, im ersten Fall 0.22% und im zweiten 0.72%).

Abb. 2. Derivatogramm des β -KH(IO₃)₂

Bei weiterer Erhitzung erfolgt von etwa 355° an ein sehr starker Gewichtsverlust, dem eine kurze Stufe in der TG-Kurve von etwa 450° bis 510° folgt; der Gewichtsverlust betrug 222 mg bzw. 227 mg für 500 mg Ausgangssubstanz. Das kann mit dem Vorgang (2) gedeutet werden:

$$\begin{array}{l} K_2 I_4 O_{11} \to I_2 O_5 + 2 \text{ KIO}_3 \\ 762 \quad 334 \end{array}$$
(2)

Das abgespaltene Jodpentoxyd sublimiert und zerfällt in Joddampf und Sauerstoff, es bleibt Kaliumjodat zurück. Der berechnete Gewichtsverlust für 500 mg Ausgangssubstanz ist 225.6 mg, in guter Übereinstimmung mit dem für beide Modifikationen gefundenen Werten (222 bzw. 227 mg); die Differenzen betragen 1.60% bzw. 0.61%. Damit kann also auch der Vorgang (2) als bewiesen gelten.

J. Thermal Anal. 1 1969

Bei 325° finden wir eine schwache und bei 350° eine starke DTA-Spitze im Falle der α -Modifikation, ebenso eine starke DTA-Spitze bei 330° und eine mittelstarke bei 340° im Falle der γ -Modifikation. Diese rühren alle von nicht näher bekannten Modifikationsänderungen des K₂I₄O₁₁ her. Gleichzeitige DTG-Spitzen

fehlen, da keine Gewichtsänderung eintritt. Über 510° verläuft die Zersetzung wieder mit großer Geschwindigkeit; von 590° an beginnt eine dritte Stufe mit dem (vom Anfang berechneten) Gewichtsverlust von 505 mg (α) bzw. 306 mg (β). Ein weiterer, langsamer Gewichtsverlust kann aber auch dann festgestellt werden, wenn die Temperatur konstant bei 600° bleibt. Das rührt von der Sublimation des gebildeten KI her. Vorgang (3) ist die Sauerstoffabgabe des KIO₃:

$$\begin{array}{c} 2 \text{ KIO}_3 \to 3 \text{ O}_2 + 2 \text{ KI} \\ 428 & 96 \end{array}$$
(3)

Inzwischen schmilzt das KIO₃ bei 560°.

Diskussion und Feststellungen

Die goniometrisch schon lange bekannten α - und β -Modifikationen des KH(IO₃)₂ wurden hergestellt und ihre Kristalldaten bestimmt. Die von den älteren Autoren als β -Modifikation bezeichneten Kristalle konnten wir nicht finden. Dagegen wurden Nädelchen gesammelt, die weder aus KH(IO₃)₂ noch aus KH₂(IO₃)₃ bestehen. Die Untersuchung der thermischen Zersetzung ergab zwar nicht große, aber sicher nachweisbare Differenzen zwischen der α - und β -Modifikation; letztere zersetzt sich schon bei niedrigerer Temperatur. Über 510° ist kein KH(IO₃)₂ vorhanden; die Derivatogramme beider Modifikationen sind gleich. Die Zersetzung beginnt mit geringer, aber stöchiometrischer Wasserabgabe und Bildung von K₂I₄O₁₁, welches zunächst I₂O₅ abgibt, wonach das gebildete KIO₃ in O₂ und KI zerfällt.

Literatur

- 1. J. SCHABUS, Bestimmung der Krystallgestalten im chemischen Laboratorium erzeugter Produkte, Wien, 1855.
- 2. J. C. G. DE MARIGNAC, Ann. des mines [5] 9 (1856) 35.
- 3. C. F. RAMMELSBERG, Die neuesten Forschungen in der krystallographischen Chemie. Leipzig. 1857, S. 57 ff.
- 4. P. GROTH, Chemische Krystallographie, Leipzig, 1908, Bd. 2. S. 142 ff.
- 5. F. PAULIK, J. PAULIK und L. ERDEY, Z. anal. Chem. 160 (1958) 241.
- 6. T. DUPUIS und J. LECOMTE, Compt. rend. 252 (1961) 26.

Résumé – On a déterminé les données cristallographiques des modifications α et γ de KH(IO₃)_{γ}. On n'a pas pu retrouver la modification β mentionnée par d'autres auteurs dans des travaux plus anciens. Lors de la décomposition thermique, les deux modifications cristallographiques perdent d'abord de l'eau, puis I_2O_5 et O_2 ; le résidu est constitué par KI. On décèle $K_2I_4O_{11}$ comme intermédiaire. Les températures des pics ATD et TGD des deux modifications montrent des différences marquées.

ZUSAMMENFASSUNG — Die Kristalldaten der α - und der γ -Modifikation des KH(JO₃)₂ wurden bestimmt; die von früheren Autoren angegebene rhombische β -Modifikation konnte nicht aufgefunden werden. Bei der thermischen Zersetzung ergeben beide Kristallarten zunächst Wasser, dann I₂O₅ und O₂; es bleibt KI zurück. Als Zwischenstufe entsteht K₂I₄O₁₁. Die Temperaturen der DTA- und DTG-Spitzen zeigen bei der α - und der γ -Modifikation sicher nachweisbare Unterschiede.

Резюме. — Определены кристаллические данные α - и γ модификации КН (IO_3)₂. β -модификацию, описанную авторами раньше получить невозможно. В ходе термораспада обоих типов кристаллов освобождается вода, одновременно выделяются I_2O_5 и O_2 , остается KI. Как промежуточный продукт образуется $K_2I_4O_{11}$. Температуры пиков ДТА и ДТГ α - и γ -модификаций, соответственно, отличаются друг от друга.